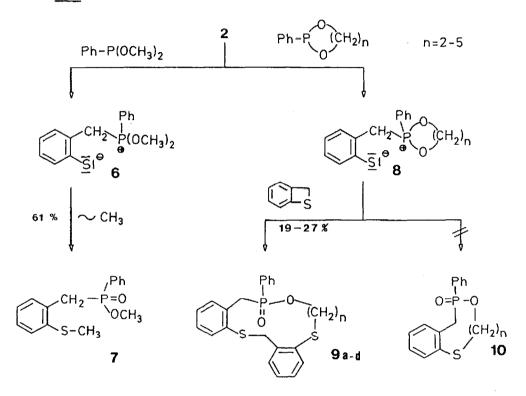

REACTIONS OF BENZOTHIETE WITH PHOSPHORUS NUCLEOPHILES - A NOVEL TYPE OF ARBUZOV REARRANGEMENT

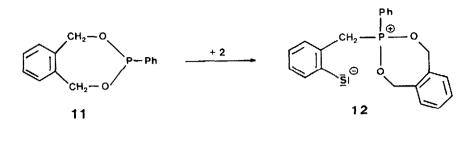
Hans-Peter Niedermann, Heinz-Ludwig Eckes, and Herbert Meier\* Institute of Organic Chemistry, University of Mainz J.-J. Becherweg 18 - 22, D-6500 Mainz 1, BRD

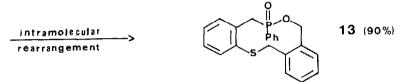
Abstract: The reaction of trialkylphosphites or related P-nucleophiles with benzothiete (1) leads to zwitter ionic species, which show an Arbuzov - like rearrangement to the products  $\underline{4}$  and  $\underline{7}$ , respectively. New heterocyclic ring systems are generated in the case of cyclic esters. The normal  $S_N^2$  reaction leads to the 1:2 adducts  $\underline{9}$ , whereas in an  $S_N^1$  process the 1:1 adduct 13 is formed.


Benzothiete (<u>1</u>) is an extremely useful auxiliary for the synthesis of many sulfur containing heterocyclic ring systems<sup>1</sup>). The o-quinoidal form 2 possesses a relative high-lying HOMO (- 8.96 eV) and a very low-lying LUMO (- 1.64 eV)<sup>27</sup>. The latter provokes a high reactivity towards nucleophiles. In boiling toluene the four-membered ring of <u>1</u> is opened and trialkyl-phosphites can be added at the exocyclic carbon center leading to the zwitter ionic structure <u>3</u> (R =  $0CH_3$ ,  $0C_2H_5$ ). Instead of a ring closure reaction in the following step a rearrangement






155


occurs by migration of an alkyl group<sup>3)</sup> to the sulfur atom bearing a negative charge. Thus the phosphonates <u>4a,b</u> are generated. The formation of the energy rich P=O double bond is certainly the driving force for this process - a fact which directly reminds on the Arbuzov rearrangement<sup>4,5)</sup>. The attack on the sulfur atom can be avoided if PCl<sub>3</sub> is used and the zwitter ion <u>3</u> (R = Cl) is scavenged by methanol or ethanol. Under these conditions the phosphonates 5a,b can be obtained.



Besides trialkylphosphites phenylphosphinic acid dialkyl esters can be applied  $(2 \rightarrow 6 \rightarrow 7)$ . Cyclic esters of phenylphosphinic acid should lead to heterocyclic ring system containing phosphorus, oxygen, and sulfur. However, in our original experiments never a 1:1 adduct was gained  $(2 \rightarrow 8 \rightarrow 10)$ . It turned out that the rearrangement of the intermediate 8 always requires a second molecule benzothiete; thus the macrocyclic systems 9a-d (n = 2, 3, 4, 5) are formed in a 1:2 addition. Obviously, the steric demands for an S<sub>N</sub>2-transition state are to high, so that an intramolecular rearrangement doesn't occur - even not when a diluted solution of benzothiete and an excess amount of cyclic ester are used.

The only chance for an intramolecular process and the formation of a 1:1 adduct should be given by a mechanistic change from  $S_N^2$  to  $S_N^1$ . Indeed, this assumption can be verified by the reaction of the benzylic system <u>11</u> which furnishes in a yield of 90% the 1,6,2-oxathia-phosphecine ring <u>13</u>.





The products <u>4a,b</u>, <u>5a,b</u>, <u>7</u>, <u>9a-d</u>, and <u>13<sup>6</sup></u> are colourless liquids which can be purified by column chromatography on silica gel with acetic acid ethyl ester. The <sup>1</sup>H- and <sup>13</sup>C-chemical shifts for the phosphonates <u>4</u>, <u>5</u> and for <u>7</u> are listed in table 1.

| Compound  | P-CH2     | S ···· C ·····C | 0 — C ······C | aryl                |  |
|-----------|-----------|-----------------|---------------|---------------------|--|
| <u>4a</u> | 3.40      | 2.47            | 3.64          | 7.13 - 7.33 (4H)    |  |
|           | 30.2      | 17.0            | 52.6          | 125.6 - 138.1 (6C)  |  |
| <u>5a</u> | 3.37      | 3.97            | 3.67          | 7.12 - 7.40 (4H)    |  |
|           | 31.8      |                 | 52.9          | 127.0 - 132.9 (6C)  |  |
| <u>7</u>  | 3.52/3.56 | 2.26            | 3.58          | 7.04 - 7.61 (9H)    |  |
|           | 35.1      | 17.4            | 51.4          | 125.7 - 138.3 (120) |  |
| 4b        | 3,38      | 2.86 1.20       | 3.99 1.22     | 7.11 - 7.40 (4H)    |  |
|           | 31.2      | 28.9 14.3       | 62.0 16.3     | 126.4 - 136.2 (6C)  |  |
| 5b        | 3,36      | 4.07            | 4.01 1.23     | 7.11 - 7.40 (4H)    |  |
| <u></u>   | 32.7      |                 | 62.3 16.3     |                     |  |

Table 1. <sup>1</sup>H- and <sup>13</sup>C-NMR Data of 4a, b, 5a, b and 7 (6-Values in CDCl<sub>3</sub>)

The products <u>9a-d</u> and <u>13</u> represent novel types of medium or large heterocyclic ring systems. The most important NMR data are summarized in table 2.

Table 2. <sup>1</sup>H- and <sup>13</sup>C-NMR Data of 9a-d and <u>13</u> ( $\delta$ -Values in CDCl<sub>3</sub>)

| Compound            | P-CH <sub>2</sub> | S-CH2     | 0— (CH <sub>2</sub> ),S                 | aryl          |
|---------------------|-------------------|-----------|-----------------------------------------|---------------|
| $\frac{9a}{(a, 2)}$ |                   |           | 4.07/4.33, 2.96/3.06                    | 6.67 - 7.57   |
| (n=2)               | 36.1              | 38.4      | 62.8 38.8                               | 126.9 - 140.7 |
| <u>9b</u>           | 3.29/3.62         | 4.50/4.56 | 3.89/4.18,1.80,3.00                     | 7.08 - 7.73   |
| (n=3)               | 35.8              | 37.8      | 62.5 29.4 33.3                          | 126.4 - 139.9 |
| <u>9c</u>           | 3.15/3.44         | 4.34/4.49 | 3.66/4.10,1.87,1.67,2.93/3.07           | 6.95 - 7.67   |
| (n=4)               | 35.6              | 37.4      | 64.4 28.9 26.3 36.6                     | 125.4 - 139.0 |
| <u>9d</u>           | 3.38/3.46         | 4.21/4.23 | 3.65/3.99,1.71/1.88,1.53,1.62,3.05/3.12 | 6.96 - 7.65   |
| (n=5)               | 35.6              | 37.7      | 64.1 29.6 24.0 27.3 34.5                | 125.9 - 137.4 |
| 13                  | 3.72              | 3.40      | 4.66/4.93 (OCH <sub>2</sub> )           | 6.85 - 7.53   |
|                     | 35.4              | 37.1      | 63.5                                    | 127.3 - 135.6 |

Acknowledgement. We are grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for the financial support.

## **References and Notes**

- 1) D. Jacob, H.-P. Niedermann and H. Meier, Tetrahedron Lett. <u>27</u>, 5703 (1986) and references cited therein.
- H. Meier, H.-L. Eckes, H.-P. Niedermann and H. Kolshorn, Angew. Chem. <u>99</u>, 1040 (1987); Angew. Chem. Int. Ed. Engl. 26, 1046 (1987).
- Aryl groups are under these conditions not capable of a cationic migration. In the presence of triarylphosphites the reaction stops at the zwitter ionic species 3.
- 4) B.A. Arbusow, Pure Appl. Chem. 9, 307 (1964).
- Compare also the reaction of trialkylphosphites with acrolein: G. Kamai and V.A. Kukhtin, Dokl. Akad. Nauk SSSR 112, 868 (1957); Chem. Abstr. 51, 13742f (1957).
- 6) The reactions were performed in boiling toluene. A solution of 5 mmol (0.61g) 1 was added dropwise to a solution of 20 mmol P-nucleophile and refluxed for several hours, until no more starting material 1 can be detected by TLC.

(Received in Germany 26 September 1988)